How do you calculate \(_{0.25}q_{2} \) using the balducci assumption? 2012 UCT paper question 2

Login

0 votes

Recall that under Baducci, \( _{1-t}q_{x+t} = (1-t). q_x\). Now, the **crux **is the following:

\( _tp_x\,_{1-t}p_{x+t} = p_x \quad \implies _tq_x= 1 - \frac{p_x}{_{1-t}p_{x+t} } \stackrel{\text{(YOU SHOW)}}= \frac{t.q_x}{1 - (1-t).q_x}\) under Balducci.

The rest should be fairly straightforward from there. Do you agree with my answer of 0.000157578?

I hope I haven't made any typos!

- All categories
- BUS 1003H - Introduction to Financial Risk (43)
- BUS 2016H - Financial Mathematics (53)
- BUS 3018F - Models (69)
- BUS 3024S - Contingencies (61)
- BUS 4028F - Financial Economics (20)
- BUS 4027W - Actuarial Risk Management (46)
- BUS 4029H - Research Project (5)
- Mphil (1)
- Calculus and Pure Mathematics (3)
- Statistics (16)

...